Wheel Alignment/Tracking

Geometry and Alignment at Drury lane Services - Hunter DSP 600

Why have your wheel alignment & geometry fixed by us? Well …

  • Reduced Tyre Wear – Over the years, a properly aligned vehicle can add thousands of miles to tyre life.
  • Better Fuel Economy – Correct alignment sets all four wheels perfect and minimizes rolling resistance to give you massive fuel savings.
  • Improved Handling – If your vehicle pulls to one side, steering wheel is off-centre or you have to keep moving the steering wheel to keep your car travelling straight ahead then a proper geometry and alignment will correct all this and ensure road shock is more efficiently absorbed for a smoother ride.
  • Safer Driving – Our alignment procedure includes checking your suspension and this allows us to spot worn parts before they can cause costly problems.

Our current Geometry & Alignment system is the state of the art Hunter DSP 600 imaging system. This allows us to perform full 4 wheel alignment checks on your vehicle. Incredibly accurate adjustments can be made to your vehicle’s Geometry and this includes adjustments to the camber, caster and toe.

Our highly qualified staff ensure that your vehicle handles and performs exactly as the manufacturer intended. We also offer a bespoke adjustment service. If you have specific requirements then we can set the system to adjust your car accordingly. Want it set up for racing on a track but not too extreme for road use? We’ll do it. Just tell us your preference and we can set your car up in no time.

Our experienced Geometry & Alignment technicians will give a “before and after” report sheet showing any adjustments made or required. They are also happy to answer your questions and show you how the system works. We come highly recommended by members of the Lexus Owners’ Club for our services, including Geometry and Alignment. Geometry Sessions are only £48.00 inc VAT, and includes putting the car on the machine, taking the readings and adjusting the front toe. Further adjustments are priced individually and if further work is needed to make these adjustments we will let you know how much it will cost immediately. Our costs are always a fraction of the dealership’s costs.

Contact us now to book your car in.




Camber, Caster and Toe: What Do They Mean?

The three major alignment parameters on a car are toe, camber, and caster. Most enthusiasts have a good understanding of what these settings are and what they involve, but many may not know why a particular setting is called for, or how it affects performance. Let’s take a quick look at this basic aspect of suspension tuning.


When a pair of wheels is set so that their leading edges are pointed slightly towards each other, the wheel pair is said to have toe-in. If the leading edges point away from each other, the pair is said to have toe-out. The amount of toe can be expressed in degrees as the angle to which the wheels are out of parallel, or more commonly, as the difference between the track widths as measured at the leading and trailing edges of the tires or wheels. Toe settings affect three major areas of performance: tire wear, straight-line stability and corner entry handling characteristics.

For minimum tire wear and power loss, the wheels on a given axle of a car should point directly ahead when the car is running in a straight line. Excessive toe-in or toe-out causes the tires to scrub, since they are always turned relative to the direction of travel. Too much toe-in causes accelerated wear at the outboard edges of the tires, while too much toe-out causes wear at the inboard edges.



Toe In Toe Out


So if minimum tire wear and power loss are achieved with zero toe, why have any toe angles at all? The answer is that toe settings have a major impact on directional stability. The illustrations at right show the mechanisms involved. With the steering wheel centered, toe-in causes the wheels to tend to roll along paths that intersect each other. Under this condition, the wheels are at odds with each other, and no turn results.

When the wheel on one side of the car encounters a disturbance, that wheel is pulled rearward about its steering axis. This action also pulls the other wheel in the same steering direction. If it’s a minor disturbance, the disturbed wheel will steer only a small amount, perhaps so that it’s rolling straight ahead instead of toed-in slightly. But note that with this slight steering input, the rolling paths of the wheels still don’t describe a turn. The wheels have absorbed the irregularity without significantly changing the direction of the vehicle. In this way, toe-in enhances straight-line stability.

If the car is set up with toe-out, however, the front wheels are aligned so that slight disturbances cause the wheel pair to assume rolling directions that do describe a turn. Any minute steering angle beyond the perfectly centered position will cause the inner wheel to steer in a tighter turn radius than the outer wheel. Thus, the car will always be trying to enter a turn, rather than maintaining a straight line of travel. So it’s clear that toe-out encourages the initiation of a turn, while toe-in discourages it.



Toe In Toe Out


With toe-in (left) a deflection of the suspension does not cause the wheels to initiate a turn as with toe-out (right).

The toe setting on a particular car becomes a tradeoff between the straight-line stability afforded by toe-in and the quick steering response promoted by toe-out. Nobody wants their street car to constantly wander over tar strips-the never-ending steering corrections required would drive anyone batty. But racers are willing to sacrifice a bit of stability on the straight-away for a sharper turn-in to the corners. So street cars are generally set up with toe-in, while race cars are often set up with toe-out.

With four-wheel independent suspension, the toe must also be set at the rear of the car. Toe settings at the rear have essentially the same effect on wear, directional stability and turn-in as they do on the front. However, it is rare to set up a rear-drive race car toed out in the rear, since doing so causes excessive oversteer, particularly when power is applied. Front-wheel-drive race cars, on the other hand, are often set up with a bit of toe-out, as this induces a bit of oversteer to counteract the greater tendency of front-wheel-drive cars to understeer.

Remember also that toe will change slightly from a static situation to a dynamic one. This is is most noticeable on a front-wheel-drive car or independently-suspended rear-drive car. When driving torque is applied to the wheels, they pull themselves forward and try to create toe-in. This is another reason why many front-drivers are set up with toe-out in the front. Likewise, when pushed down the road, a non-driven wheel will tend to toe itself out. This is most noticeable in rear-drive cars.

The amount of toe-in or toe-out dialed into a given car is dependent on the compliance of the suspension and the desired handling characteristics. To improve ride quality, street cars are equipped with relatively soft rubber bushings at their suspension links, and thus the links move a fair amount when they are loaded. Race cars, in contrast, are fitted with steel spherical bearings or very hard urethane, metal or plastic bushings to provide optimum rigidity and control of suspension links. Thus, a street car requires a greater static toe-in than does a race car, so as to avoid the condition wherein bushing compliance allows the wheels to assume a toe-out condition.

It should be noted that in recent years, designers have been using bushing compliance in street cars to their advantage. To maximize transient response, it is desirable to use a little toe-in at the rear to hasten the generation of slip angles and thus cornering forces in the rear tires. By allowing a bit of compliance in the front lateral links of an A-arm type suspension, the rear axle will toe-in when the car enters a hard corner; on a straightaway where no cornering loads are present, the bushings remain undistorted and allow the toe to be set to an angle that enhances tire wear and stability characteristics. Such a design is a type of passive four-wheel steering system.


Caster is the angle to which the steering pivot axis is tilted forward or rearward from vertical, as viewed from the side. If the pivot axis is tilted backward (that is, the top pivot is positioned farther rearward than the bottom pivot), then the caster is positive; if it’s tilted forward, then the caster is negative.

Positive caster tends to straighten the wheel when the vehicle is traveling forward, and thus is used to enhance straight-line stability. The mechanism that causes this tendency is clearly illustrated by the castering front wheels of a shopping cart (above). The steering axis of a shopping cart wheel is set forward of where the wheel contacts the ground. As the cart is pushed forward, the steering axis pulls the wheel along, and since the wheel drags along the ground, it falls directly in line behind the steering axis. The force that causes the wheel to follow the steering axis is proportional to the distance between the steering axis and the wheel-to-ground contact patch-the greater the distance, the greater the force. This distance is referred to as “trail.”

Due to many design considerations, it is desirable to have the steering axis of a car’s wheel right at the wheel hub. If the steering axis were to be set vertical with this layout, the axis would be coincident with the tire contact patch. The trail would be zero, and no castering would be generated. The wheel would be essentially free to spin about the patch (actually, the tire itself generates a bit of a castering effect due to a phenomenon known as “pneumatic trail,” but this effect is much smaller than that created by mechanical castering, so we’ll ignore it here). Fortunately, it is possible to create castering by tilting the steering axis in the positive direction. With such an arrangement, the steering axis intersects the ground at a point in front of the tire contact patch, and thus the same effect as seen in the shopping cart casters is achieved.

The tilted steering axis has another important effect on suspension geometry. Since the wheel rotates about a tilted axis, the wheel gains camber as it is turned. This effect is best visualized by imagining the unrealistically extreme case where the steering axis would be horizontal-as the steering wheel is turned, the road wheel would simply change camber rather than direction. This effect causes the outside wheel in a turn to gain negative camber, while the inside wheel gains positive camber. These camber changes are generally favorable for cornering, although it is possible to overdo it.

Most cars are not particularly sensitive to caster settings. Nevertheless, it is important to ensure that the caster is the same on both sides of the car to avoid the tendency to pull to one side. While greater caster angles serve to improve straight-line stability, they also cause an increase in steering effort. Three to five degrees of positive caster is the typical range of settings, with lower angles being used on heavier vehicles to keep the steering effort reasonable.



Shopping Cart Wheels


Like a shopping cart wheel (left) the trail created by the castering of the steering axis pulls the wheels in line.


Camber is the angle of the wheel relative to vertical, as viewed from the front or the rear of the car. If the wheel leans in towards the chassis, it has negative camber; if it leans away from the car, it has positive camber (see next page). The cornering force that a tire can develop is highly dependent on its angle relative to the road surface, and so wheel camber has a major effect on the road holding of a car. It’s interesting to note that a tire develops its maximum cornering force at a small negative camber angle, typically around neg. 1/2 degree. This fact is due to the contribution of camber thrust, which is an additional lateral force generated by elastic deformation as the tread rubber pulls through the tire/road interface (the contact patch).

To optimize a tire’s performance in a corner, it’s the job of the suspension designer to assume that the tire is always operating at a slightly negative camber angle. This can be a very difficult task, since, as the chassis rolls in a corner, the suspension must deflect vertically some distance. Since the wheel is connected to the chassis by several links which must rotate to allow for the wheel deflection, the wheel can be subject to large camber changes as the suspension moves up and down. For this reason, the more the wheel must deflect from its static position, the more difficult it is to maintain an ideal camber angle. Thus, the relatively large wheel travel and soft roll stiffness needed to provide a smooth ride in passenger cars presents a difficult design challenge, while the small wheel travel and high roll stiffness inherent in racing cars reduces the engineer’s headaches.

It’s important to draw the distinction between camber relative to the road, and camber relative to the chassis. To maintain the ideal camber relative to the road, the suspension must be designed so that wheel camber relative to the chassis becomes increasingly negative as the suspension deflects upward. The illustration on the bottom of page 46 shows why this is so. If the suspension were designed so as to maintain no camber change relative to the chassis, then body roll would induce positive camber of the wheel relative to the road. Thus, to negate the effect of body roll, the suspension must be designed so that it pulls in the top of the wheel (i.e., gains negative camber) as it is deflected upwards.

While maintaining the ideal camber angle throughout the suspension travel assures that the tire is operating at peak efficiency, designers often configure the front suspensions of passenger cars so that the wheels gain positive camber as they are deflected upward. The purpose of such a design is to reduce the cornering power of the front end relative to the rear end, so that the car will understeer in steadily greater amounts up to the limit of adhesion. Understeer is inherently a much safer and more stable condition than oversteer, and thus is preferable for cars intended for the public.

Since most independent suspensions are designed so that the camber varies as the wheel moves up and down relative to the chassis, the camber angle that we set when we align the car is not typically what is seen when the car is in a corner. Nevertheless, it’s really the only reference we have to make camber adjustments. For competition, it’s necessary to set the camber under the static condition, test the car, then alter the static setting in the direction that is indicated by the test results.

The best way to determine the proper camber for competition is to measure the temperature profile across the tire tread immediately after completing some hot laps. In general, it’s desirable to have the inboard edge of the tire slightly hotter than the outboard edge. However, it’s far more important to ensure that the tire is up to its proper operating temperature than it is to have an “ideal” temperature profile. Thus, it may be advantageous to run extra negative camber to work the tires up to temperature.





(TOP LEFT) Positive camber: The bottoms of the wheels are closer together than the tops. (TOP RIGHT) Negative camber: The tops of the wheels are closer together than the bottoms. (CENTER) When a suspension does not gain camber during deflection, this causes a severe positive camber condition when the car leans during cornering. This can cause funky handling. (BOTTOM) Fight the funk: A suspension that gains camber during deflection will compensate for body roll. Tuning dynamic camber angles is one of the black arts of suspension tuning.


Car manufacturers will always have recommended toe, caster, and camber settings. They arrived at these numbers through exhaustive testing. Yet the goals of the manufacturer were probably different from yours, the competitor. And what works best at one race track may be off the mark at another. So the “proper” alignment settings are best determined by you-it all boils down to testing and experimentation.



One of the most important aspects of car setup is the static weight distribution and the cross-weight percentage. Why? Picture the following:

Your car is really fast in right-hand turns, but understeers in left turns. If you get the car neutral in left turns, it oversteers in right turns. The situation is frustrating. You’ve tried springs, shocks, different bars, neutralizing the anti-roll bar, and nothing seems to work. Even on a track with mostly right-hand turns, the problem in the left-hand turns cost a lot of time.

While several different setup parameters could have caused this situation, a likely cause is excessive cross-weight.

Static Weight Distribution


Static Weight Distribution


Static weight distribution is the weight resting on each tire contact patch with the car at rest, exactly the way it will be raced. This means the driver should be in the car, all fluids topped up, and the fuel load should be such that the car makes your minimum weight rule at the designated time-usually after a race. The car should be at minimum weight, using ballast as needed to make the proper weight.

When working with static weight distribution, we use two percentages to analyze the car’s corner weights: Left weight percentage and rear weight percentage. These tell us all we need to know about the setup relative to the weight distribution. The left weight percentage is found by adding theLF weight to the LR weight and dividing the sum by the total weight.

The rear weight percentage is found in a similar manner: Add the LRand the RR weight together and divide the sum by the total weight. Many electronic scales will perform the calculations for you.

For road racing and autocrossing, the ideal left weight percentage is 50 percent. This makes the cornering force balanced from left to right and offers the best performance overall. However, many cars cannot make the 50 percent left-side weight percentage due to driver offset. Still, it is a worthwhile goal to strive for 50 percent left-side weight.

Rear weight percentage for road racing and autocrossing is less definite. The more power a car has, the more that static weight over the drive wheels helps acceleration off the corners. Additionally, it is much more difficult to change rear percentage much, since rear weight is mostly a design function. It still pays to be thoughtful about weight placement fore and aft in your car.

The only way to change the static weight distribution percentages is to physically move weight around in the car. Jacking weight will not alter the left side or the rear percentages.

Cross-weight Percentage


Cross Weight Percentage


Cross-weight percentage compares the diagonal weight totals to the car’s total weight. To calculate cross-weight percentage, add the RFweight to the LR weight and divide the sum by the total weight of the car. Cross-weight is also called wedge: If the percentage is over 50 percent, the car has wedge; if below 50 percent, the car has reverse wedge.

More wedge means that the car will likely understeer more in a left turn. The advantage to wedge is that the left rear tire carries more load, so the car drives off the turns better. But in a right turn, the opposite occurs and the handling is worse. In almost all cases, the loss of cornering performance in one direction is greater than the gain in the other direction.

On oval track cars, cross-weight is usually used in conjunction with stagger (where the right rear tire is larger in circumference than the left rear tire) to balance handling. More stagger usually loosens the handling in left turns, so more cross-weight is used to tighten it up. But stagger is not a good idea on a road course or autocross either, where the ideal is 50-percent cross-weight and no stagger.

One of the problems with cross-weight is that it will change the handling balance from a left to a right turn. This can make maneuvering in traffic difficult, even dangerous. On a road course, the cross-weight percentage should be very close to 50 percent, within a half-degree either way, to keep the handling balance similar in a right-hand turn compared to a left-hand turn. In the example at the beginning of the article, this was the problem: a cross-weight percentage that was less than 50 percent, and probably off by at least two percent.

One of the keys to obtaining a good setup is using the correct procedure to weigh your race car.

How to Weigh Your Race Car


Adjusting Cross Weight


Here are some points to remember when weighing your race car:

  • Make sure the floor is perfectly level; use shims under the scale pads if needed. Small angles can throw off your readings significantly.
  • Set tire pressures first.
  • Check stagger at each tire, even if using radials.
  • Put the driver weight in the car, preferably the driver.
  • Use a load of fuel for where you you want the car balanced, either at the start of the race, the end of the race or an average between the two.
  • Disconnect the shocks, when possible, and the anti-roll bars.
  • Use blocks the same height as your scale pads to move the car off the scales to make adjustments.
  • Bounce the car at each corner to free the suspension from any bind, then roll the car onto the scales.
  • Make sure the tires are centered on the scales.
  • Recheck air pressure often to assure ride heights stay consistent.

Setting Static Weight Distribution:

  • Check static weight before working on cross-weight.
  • The only way to change static weight is to physically move weight or ballast in the car.
  • To increase left-side weight, move weight as far to the left as possible.
  • To increase rear weight, move weight as far back as possible.
  • Move ballast first, since it’s easier. Then move components like the battery or fuel cell.
  • It is best to get 50 percent left-side weight when possible.
  • Get the rear percentage as close to the manufacturer’s specs as possible.

Setting Cross-weight:

  • Once static weight percentages are set, work on cross-weight percentages.
  • You cannot change the left or rear percentages by jacking weight around in the car, although this will change cross-weight.
  • Changing the ride height at any corner will change the cross-weight percentage.
  • If you raise the ride height at a given corner (put a turn in or add a round of wedge), the weight on that corner will increase, as will the weight on the diagonally opposite corner. The other two corners will lose weight.
  • If you lower the ride height at a given corner, that corner will lose weight as will the diagonally opposite corner. The other two corners will gain weight. This will not change the left-side or rear weight percentages.
  • To add weight to a given corner, raise the ride height at that corner or lower the ride height at an adjacent corner. For example, if your initial setup is 52 percent cross-weight, and you want 50 percent cross-weight, lowering the right front or left rear corner will decrease cross-weight percentage. You could also raise the left front or right rear ride heights to do the same thing.
  • It is best to make small changes at each corner, instead of a big change at one corner. This keeps the ride heights as close to ideal as possible. In the above example, to go from 52 percent to 50 percent cross-weight, try lowering the right front and the left rear one-half turn on the weight jack bolt or spring perch while raising the left front and right rear the same amount.
  • Always record the cross-weights and ride heights for reference at the race track in case changes are needed.
  • Measure control arm angles after each change. The angles are another way to set the suspension for the desired ride height and cross-weight percentage.
  • The distance from the ground to an inner suspension arm pivot point will also accomplish the above goal.
  • Remember that changes in stagger, tire pressures and springs will change the ride height and alter the cross-weight percentage.

Change at the Track:

  • Make small changes at the track, and make only one change at a time.
  • If the car understeers or oversteers in only one direction, check the cross-weight percentage.

One of the most important aspects of racing is having a good handling balance. Setting static weight distribution and adjusting cross-weight percentage is one way to assure good handling. Taking the time and making the effort always pay dividends.


We provide Wheel Alignment/Tracking and Geometry services to customers throughout Oldham (Chadderton, Royton, Saddleworth, Moorside, Lees, Springhead, etc), Tameside (Ashton, Droyslden, Mossley, Stalybridge, etc), Rochdale (Milnrow, Newhey, Bamford, Castleton, etc), Manchester (Newton Heath, Failsworth, Miles Platting, Beswick, Moston, Middleton, etc), Cheshire, Blackburn, Macclesfield, Warrington, Widnes, Huddersfield, Halifax, Leeds, Glossop, Lancashire, Sheffield and all across the UK. We’ve even had customers from Fife!